Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Public Health ; 11: 1078540, 2023.
Article in English | MEDLINE | ID: covidwho-2262508

ABSTRACT

Background: The COVID-19 pandemic continues to pose unprecedented threats and challenges to global public health. Hospital Clinical Laboratory and public health institutions have been playing an important role in case detection, epidemic research and decision-making, and epidemic prevention and control. Objective: To explore the current situation and influencing factors of work stress of medical workers in hospital clinical laboratory in fighting against COVID-19. Methods: A cluster random sampling method was used to select seven hospitals from 14 tertiary hospitals in Xiamen, and medical workers in the selected hospitals were investigated by self-administered questionnaire. A total of 150 medical workers inclinical laboratory participated in this survey, 138 valid questionnaires were collected, with a response rate of 92%. Results: The work stress scores of the medical workers in the clinical laboratory of hospital in the COVID-19 epidemic were collected (55.22 ± 11.48); The top three dimensions of work stress score were work stress (work load), external environment and doctor-patient relationship. The results of multiple stepwise regression analysis showed that the working hours per day, whether overtime and night shift can get compensatory leave and Job satisfaction with the work of the clinical laboratory were the main factors affecting the work stress level of medical workers in the clinical laboratory of hospital during COVID-19 epidemic. Conclusion: The COVID-19 has caused great harm to the physical and mental health of the public. Medical staff are in the front line of prevention and control of the epidemic, so medical workers in hospital clinical laboratory exposed to a high level of stress at work. Laboratory leaders and hospital managers should take active and effective measures to reduce the working hours of the medical staff in clinical laboratory, optimize the arrangement of night shift and overtime working, strengthen the training of group and individual pressure management, reduce the work stress of the medical staff, improve the overall happiness of the medical staff in clinical laboratory, and stabilize the clinical laboratory team, improve the physical and mental health of medical workers in clinical laboratory.


Subject(s)
COVID-19 , Occupational Stress , Humans , COVID-19/epidemiology , Job Satisfaction , Pandemics , Laboratories, Clinical , Physician-Patient Relations , Occupational Stress/epidemiology
2.
Rob Auton Syst ; 148: 103917, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1482947

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has increased mortality and morbidity world-wide. Oropharyngeal swabbing is a well-known and commonly used sampling technique for COVID-19 diagnose around the world. We developed a robot to assist with COVID-19 oropharyngeal swabbing to prevent frontline clinical staff from being infected. The robot integrates a UR5 manipulator, rigid-flexible coupling (RFC) manipulator, force-sensing and control subsystem, visual subsystem and haptic device. The robot has strength in intrinsically safe and high repeat positioning accuracy. In addition, we also achieve one-dimensional constant force control in the automatic scheme (AS). Compared with the rigid sampling robot, the developed robot can perform the oropharyngeal swabbing procedure more safely and gently, reducing risk. Alternatively, a novel robot control schemes called collaborative manipulation scheme (CMS) which combines a automatic phase and teleoperation phase is proposed. At last, comparative experiments of three schemes were conducted, including CMS, AS, and teleoperation scheme (TS). The experimental results shows that CMS obtained the highest score according to the evaluation equation. CMS has the excellent performance in quality, experience and adaption. Therefore, the proposal of CMS is meaningful which is more suitable for robot-sampling.

3.
IEEE Robot Autom Lett ; 7(2): 1856-1863, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1132781

ABSTRACT

The outbreak of novel coronavirus pneumonia (COVID-19) has caused mortality and morbidity worldwide. Oropharyngeal-swab (OP-swab) sampling is widely used for the diagnosis of COVID-19 in the world. To avoid the clinical staff from being affected by the virus, we developed a 9-degree-of-freedom (DOF) rigid-flexible coupling (RFC) robot to assist the COVID-19 OP-swab sampling. This robot is composed of a visual system, UR5 robot arm, micro-pneumatic actuator and force-sensing system. The robot is expected to reduce risk and free up the clinical staff from the long-term repetitive sampling work. Compared with a rigid sampling robot, the developed force-sensing RFC robot can facilitate OP-swab sampling procedures in a safer and softer way. In addition, a varying-parameter zeroing neural network-based optimization method is also proposed for motion planning of the 9-DOF redundant manipulator. The developed robot system is validated by OP-swab sampling on both oral cavity phantoms and volunteers.

SELECTION OF CITATIONS
SEARCH DETAIL